Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Open Forum Infect Dis ; 10(5): ofad253, 2023 May.
Article in English | MEDLINE | ID: covidwho-20242237

ABSTRACT

Presymptomatic plasma samples from 1596 donors reporting coronavirus disease 2019 infection or symptoms after blood donation were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and anti-S and anti-N antibodies. Prior infection and vaccination both protected from developing SARS-CoV-2 RNAemia and from symptomatic infection. RNAemia rates did not differ in the Delta and Omicron variant eras.

2.
JCI Insight ; 8(8)2023 04 24.
Article in English | MEDLINE | ID: covidwho-2271561

ABSTRACT

Multiple randomized, controlled clinical trials have yielded discordant results regarding the efficacy of convalescent plasma in outpatients, with some showing an approximately 2-fold reduction in risk and others showing no effect. We quantified binding and neutralizing antibody levels in 492 of the 511 participants from the Clinical Trial of COVID-19 Convalescent Plasma in Outpatients (C3PO) of a single unit of COVID-19 convalescent plasma (CCP) versus saline infusion. In a subset of 70 participants, peripheral blood mononuclear cells were obtained to define the evolution of B and T cell responses through day 30. Binding and neutralizing antibody responses were approximately 2-fold higher 1 hour after infusion in recipients of CCP compared with saline plus multivitamin, but levels achieved by the native immune system by day 15 were almost 10-fold higher than those seen immediately after CCP administration. Infusion of CCP did not block generation of the host antibody response or skew B or T cell phenotype or maturation. Activated CD4+ and CD8+ T cells were associated with more severe disease outcome. These data show that CCP leads to a measurable boost in anti-SARS-CoV-2 antibodies but that the boost is modest and may not be sufficient to alter disease course.


Subject(s)
COVID-19 , Leukocytes, Mononuclear , Humans , COVID-19/therapy , COVID-19 Serotherapy , Antibodies, Neutralizing , Adaptive Immunity
3.
J Clin Invest ; 132(17)2022 09 01.
Article in English | MEDLINE | ID: covidwho-2009249

ABSTRACT

Respiratory viruses such as influenza do not typically cause viremia; however, SARS-CoV-2 has been detected in the blood of COVID-19 patients with mild and severe symptoms. Detection of SARS-CoV-2 in blood raises questions about its role in pathogenesis as well as transfusion safety concerns. Blood donor reports of symptoms or a diagnosis of COVID-19 after donation (post-donation information, PDI) preceded or coincided with increased general population COVID-19 mortality. Plasma samples from 2,250 blood donors who reported possible COVID-19-related PDI were tested for the presence of SARS-CoV-2 RNA. Detection of RNAemia peaked at 9%-15% of PDI donors in late 2020 to early 2021 and fell to approximately 4% after implementation of widespread vaccination in the population. RNAemic donors were 1.2- to 1.4-fold more likely to report cough or shortness of breath and 1.8-fold more likely to report change in taste or smell compared with infected donors without detectable RNAemia. No infectious virus was detected in plasma from RNAemic donors; inoculation of permissive cell lines produced less than 0.7-7 plaque-forming units (PFU)/mL and in susceptible mice less than 100 PFU/mL in RNA-positive plasma based on limits of detection in these models. These findings suggest that blood transfusions are highly unlikely to transmit SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Blood Donors , COVID-19/diagnosis , Humans , Mice , RNA, Viral , SARS-CoV-2/genetics , Viremia
4.
Sci Transl Med ; 13(612): eabh2624, 2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1371845

ABSTRACT

Neutralizing autoantibodies against type I interferons (IFNs) have been found in some patients with critical coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the prevalence of these antibodies, their longitudinal dynamics across the disease severity scale, and their functional effects on circulating leukocytes remain unknown. Here, in 284 patients with COVID-19, we found type I IFN­specific autoantibodies in peripheral blood samples from 19% of patients with critical disease and 6% of patients with severe disease. We found no type I IFN autoantibodies in individuals with moderate disease. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 patients with COVID-19 and 26 non­COVID-19 controls revealed a lack of type I IFN­stimulated gene (ISG-I) responses in myeloid cells from patients with critical disease. This was especially evident in dendritic cell populations isolated from patients with critical disease producing type I IFN­specific autoantibodies. Moreover, we found elevated expression of the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) on the surface of monocytes isolated from patients with critical disease early in the disease course. LAIR1 expression is inversely correlated with ISG-I expression response in patients with COVID-19 but is not expressed in healthy controls. The deficient ISG-I response observed in patients with critical COVID-19 with and without type I IFN­specific autoantibodies supports a unifying model for disease pathogenesis involving ISG-I suppression through convergent mechanisms.


Subject(s)
Autoantibodies , COVID-19 , Interferon Type I , Autoantibodies/immunology , COVID-19/immunology , Humans , Interferon Type I/immunology
5.
Open Forum Infect Dis ; 8(8): ofab385, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1361798

ABSTRACT

We characterized the antibody composition of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) and the immunologic responses of hospitalized COVID-19 patients after receiving CCP or nonimmune fresh frozen plasma. Despite selection of CCP with significantly higher total immunoglobulin G than recipients, neutralizing antibody levels did not differ between donor plasma and CCP recipients.

6.
Sci Adv ; 7(31)2021 Jul.
Article in English | MEDLINE | ID: covidwho-1334521

ABSTRACT

Interpretation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serosurveillance studies is limited by poorly defined performance of antibody assays over time in individuals with different clinical presentations. We measured antibody responses in plasma samples from 128 individuals over 160 days using 14 assays. We found a consistent and strong effect of disease severity on antibody magnitude, driven by fever, cough, hospitalization, and oxygen requirement. Responses to spike protein versus nucleocapsid had consistently higher correlation with neutralization. Assays varied substantially in sensitivity during early convalescence and time to seroreversion. Variability was dramatic for individuals with mild infection, who had consistently lower antibody titers, with sensitivities at 6 months ranging from 33 to 98% for commercial assays. Thus, the ability to detect previous infection by SARS-CoV-2 is highly dependent on infection severity, timing, and the assay used. These findings have important implications for the design and interpretation of SARS-CoV-2 serosurveillance studies.

8.
Nat Commun ; 12(1): 6, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1007633

ABSTRACT

The current practice for diagnosis of COVID-19, based on SARS-CoV-2 PCR testing of pharyngeal or respiratory specimens in a symptomatic patient at high epidemiologic risk, likely underestimates the true prevalence of infection. Serologic methods can more accurately estimate the disease burden by detecting infections missed by the limited testing performed to date. Here, we describe the validation of a coronavirus antigen microarray containing immunologically significant antigens from SARS-CoV-2, in addition to SARS-CoV, MERS-CoV, common human coronavirus strains, and other common respiratory viruses. A comparison of antibody profiles detected on the array from control sera collected prior to the SARS-CoV-2 pandemic versus convalescent blood specimens from virologically confirmed COVID-19 cases demonstrates near complete discrimination of these two groups, with improved performance from use of antigen combinations that include both spike protein and nucleoprotein. This array can be used as a diagnostic tool, as an epidemiologic tool to more accurately estimate the disease burden of COVID-19, and as a research tool to correlate antibody responses with clinical outcomes.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19 Testing , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Microarray Analysis/methods , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology
9.
Cell Rep Med ; 1(7): 100123, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-793949

ABSTRACT

Comprehensive understanding of the serological response to SARS-CoV-2 infection is important for both pathophysiologic insight and diagnostic development. Here, we generate a pan-human coronavirus programmable phage display assay to perform proteome-wide profiling of coronavirus antigens enriched by 98 COVID-19 patient sera. Next, we use ReScan, a method to efficiently sequester phage expressing the most immunogenic peptides and print them onto paper-based microarrays using acoustic liquid handling, which isolates and identifies nine candidate antigens, eight of which are derived from the two proteins used for SARS-CoV-2 serologic assays: spike and nucleocapsid proteins. After deployment in a high-throughput assay amenable to clinical lab settings, these antigens show improved specificity over a whole protein panel. This proof-of-concept study demonstrates that ReScan will have broad applicability for other emerging infectious diseases or autoimmune diseases that lack a valid biomarker, enabling a seamless pipeline from antigen discovery to diagnostic using one recombinant protein source.


Subject(s)
Antigens, Viral/immunology , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Antibodies, Viral/blood , COVID-19/blood , Female , Humans , Male , Middle Aged , Peptide Library , Protein Array Analysis , Proteome/immunology , Reproducibility of Results , SARS-CoV-2/immunology , Sensitivity and Specificity , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL